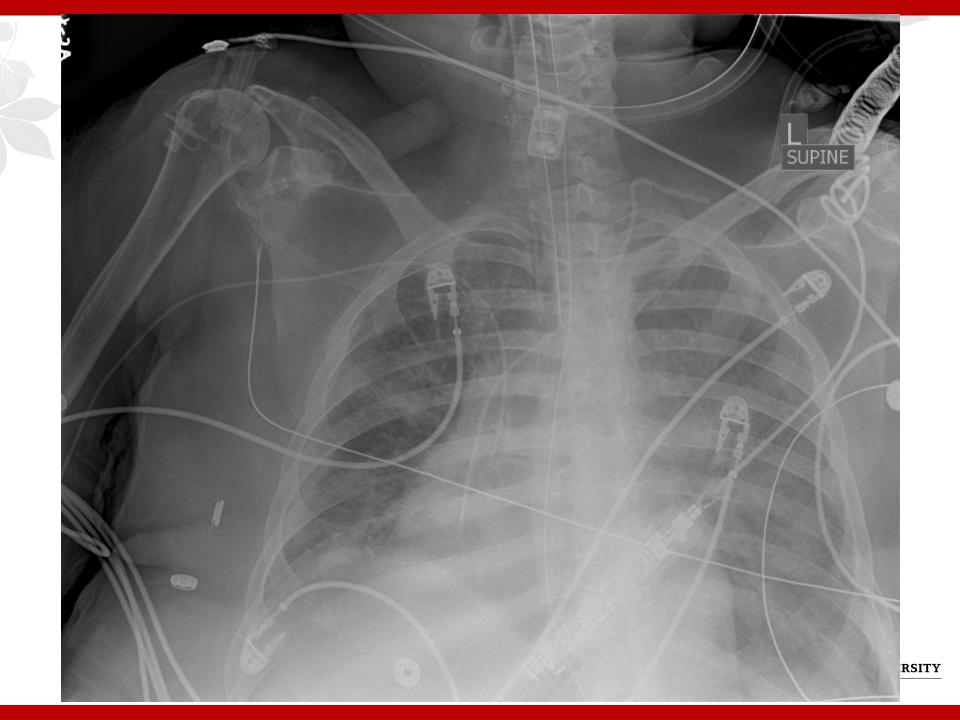
How to Keep Your VAP Rate from Defining You

Improving People's Lives Through Innovations in Personalized Health Care Matthew Exline, MD MPH Director MICU Professor *Division of Pulmonary, Critical Care, and Sleep Medicine*

The Ohio State University

- 46 year-old with a history of neurogenic bladder admitted with malaise, nausea, and dark/malodorous urine
- Diagnosed with urosepsis and admitted to the floor
- PMH: HTN, rheumatoid arthritis, spinal stenosis, diabetes, multiple urinary tract infections



- Treated for the Pseudomonas and E.coli found in her urine
- Hospital Day #3 transferred to unit for septic shock
- Eventually required intubation for increased work of breathing / septic encephalopathy

- Weaned off pressors / ventilator settings
- Did not awaken when her sedation was stopped
 - unable to be extubate
- On ventilator day #6 she again became hypotensive, hypoxemic
 - Started on vanco & pip/tazo

BAL grew Acinetobacter Baumannii

Resistant to pip / tazo

- BAL grew Acinetobacter Baumannii
 - Resistant to pip / tazo
- On day #7 she "coded" repeatedly and was transitioned to comfort care by her family
- Cause of Death Ventilator-Associated Pneumonia

- BAL grew Acinetobacter Baumannii
 - Resistant to pip / tazo
- On day #7 she "coded" repeatedly and was transitioned to comfort care by her family
- Cause of Death Ventilator-Associated Pneumonia

Could we have prevented this patient's death?

Ventilator-Associated Pneumonia Learning Objectives

- Understand NEW diagnostic criteria for a ventilator-associate pneumonia
- Understand the treatment options for ventilatorassociate pneumonia
- Discuss the role of "VAP-bundles" in preventing ventilator-associate infections

Definitions

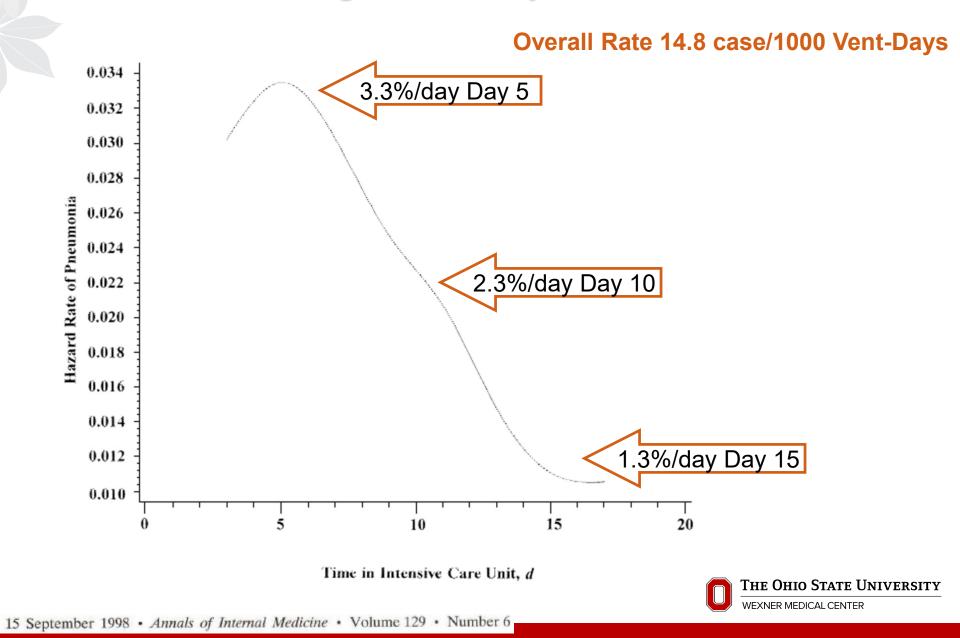
- VAP pneumonia after 48-hours on ventilator
- HAP pneumonia after 48-hours of hospital admission
- CAP community-acquired pneumonia (everyone else)
- HCAP Healthcare-Associated Pneumonia
 - Previous definition of pneumonia in patients with longterm exposure to healthcare
 - Examples: dialysis units, ECF/SNF, chronic care areas
 - Eliminated as overly broad and potentially leading to overuse of antibiotics
 - Now evaluate as CAP with risk factors

Definitions

VAP – pneumonia after 48-hours on ventilator

- HAP pneumonia after 48-hours of hospital admission
- CAP community-acquired pneumonia (everyone else)
- HCAP Healthcare-Associated Pneumonia
 - Previous definition of pneumonia in patients with longterm exposure to healthcare
 - Examples: dialysis units, ECF/SNF, chronic care areas
 - Eliminated as overly broad and potentially leading to overuse of antibiotics
 - Now evaluate as CAP with risk factors

Just How Common Is Ventilator-Associated Pneumonia?


Overall Incidence:

8 – 28% of Mechanically Ventilated Patients

		Year of	No. of	Incidence		Mortality Rate
First Author	Ref.	Publication	Patients	(%)	Diagnostic Criteria	(%)
Patients in ICU						
Salata	41	1987		41	Clinical-autopsy	76
Craven	15	1986	233	21	Clinical	55
Langer	9	1989	724	23	Clinical	44
Fagon	12	1989	567	9	PSB	71
Kerver	43	1987	39	67	Clinical	30
Driks	40	1987	130	18	Clinical	56
Torres	14	1990	322	24	Clinical–PSB	33
Baker	44	1996	514	5	PSB/BAL	24
Kollef	45	1993	277	16	Clinical	37
Fagon	51	1996	1,118	28	PSB/BAL	53
Timsit	46	1996	387	15	PSB/BAL	57
Cook	35	1998	1,014	18	Clinical–PSB/BAL	24
Tejada Artigas	47	2001	103	22	PSB	44

Risk of VAP Highest Early On

Patients At Risk Ventilator-Associated Pneumonia

TABLE 6. INDEPENDENT FACTORS FOR VENTILATOR-ASSOCIATED PNEUMONIA IDENTIFIED BY **MULTIVARIATE ANALYSIS IN SELECTED STUDIES***

Host Factors	Intervention Factors	Other Factors	
Serum albumin, < 2.2 g/dl	H_2 blockers ± antacids	Season: fall, winter	
Age, ≥ 60 yr	Paralytic agents, continuous intravenous sedation		
ARDS	> 4 units of blood products		
COPD, pulmonary disease	Intracranial pressure monitoring		
Coma or impaired consciousness	MV > 2 d		
Burns, trauma	Positive end-expiratory pressure		
Organ failure	Frequent ventilator circuit changes		
Severity of illness	Reintubation		
Large-volume gastric aspiration	Nasogastric tube		
Gastric colonization and pH	Supine head position		
Upper respiratory tract colonization	Transport out of the ICU		
Sinusitis	Prior antibiotic or no antibiotic therapy [†]		

Definition of abbreviations: ARDS = acute respiratory distress syndrome; COPD = chronic obstructive pulmonary disease; ICU = intensive care unit: MV = mechanical ventilation.

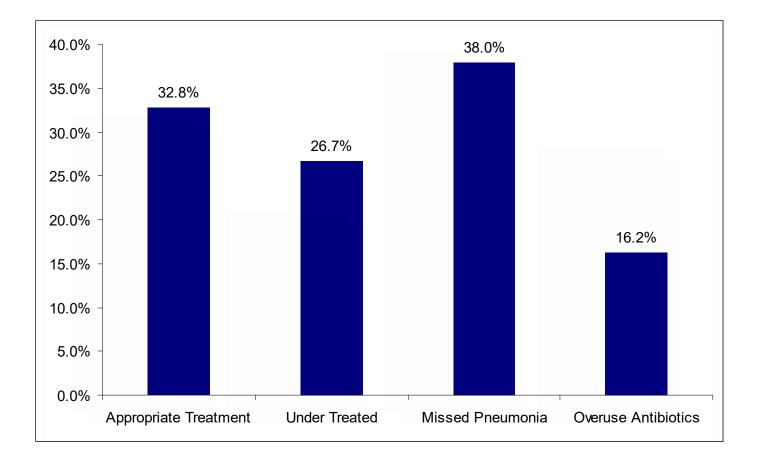
EVERYONE! If they don't have any of these, why are they in the unit?

Ventilator-Associated Pneumonia Learning Objectives

- Understand diagnostic criteria for a ventilatorassociate pneumonia
- Understand the treatment options for ventilatorassociate pneumonia
- Discuss the role of "VAP-bundles" in preventing ventilator-associate infections

Diagnostic Challenge of VAP

Criteria	Advantage	Disadvantage
Clinical	Decision made by treating team based on symptoms	Symptoms nonspecific. Only 43% of clinically suspected VAP confirmed by micro.
Radiographic	More objective? Readily available.	Many ICU patients with abnormal x-rays.
Microbiologic	Most objective.	Delay in treatment. Questionable sensitive and specificity.


Maybe Listen to the Resident...

	Percentage of Accurate Prediction			
Predictions	All patients (n = 84)	Patients Who Had Pneumonia (n = 27)	Patients Who Did Not Have Pneumonia (n = 57)	
All predictions	77	62	84	
Predictions of				
Senior consultants ($n = 110$)	77	57	84	
Staff physicians (n = 186)	72	50	81	
Residents $(n = 112)$	78	(70)	81	
Predictions		\bigcirc		
Of best predictor	82	72	86	
Of worst predictor	71	50	83	
When decision was unanimous $(n = 49)$	90	79	94	

Table 4-Evaluation of Clinical Diagnosis of Pneumonia in 84 Patients Studied

Even with residents we are bad

Chest 1993;103;547-553

Diagnostic Challenge of VAP

Technique	Sensitivity	Specificity	
Chest X-ray	92%	33%	
Leukocytosis	77%	58%	
Fever	46%	42%	
Purulent Secretions	69%	42%	
CXR + 2 Signs	69%	75%	
Sputum Culture	69%	92%	
BAL	39%	100%	

Figure 1: Ventilator-Associated Events (VAE) Surveillance Algorithm

The New Definition

Pity your Infection Preventionist

Patient has a baseline period of stability or improvement on the ventilator, defined by \geq 2 calendar days of stable or decreasing daily minimum^{*} FIO₂ or PEEP values. The baseline period is defined as the 2 calendar days immediately preceding the first day of increased daily minimum PEEP or FIO₂.

Daily minimum defined by lowest value of FiO2 or PEEP during a calendar day that is maintained for at least 1 hour.

After a period of stability or improvement on the ventilator, the patient has at least one of the following indicators of worsening oxygenation: 1) Increase in daily minimum^{*} FIO₂ of \geq 0.20 (20 points) over the daily minimum FIO₂ in the baseline period, sustained for \geq 2 calendar days. 2) Increase in daily minimum^{*} PEEP values of \geq 3 cmH₂O over the daily minimum FICP in the baseline period^{*}, sustained for \geq 2 calendar days. Coally minimum defined by lowest value of FIO₂ or PEEP during a calendar day that is maintained for at least 1 hour. *Daily minimum PEEP values of 0-5 cmH₂O are considered equivalent for the purposes of VAE surveillance.

Ventilator-Associated Condition (VAC)

On or after calendar day 3 of mechanical ventilation and within 2 calendar days before or after the onset of worsening oxygenation, the patient meets <u>both</u> of the following criteria:

 Temperature > 38 °C or < 36°C, OR white blood cell count ≥ 12,000 cells/mm³ or ≤ 4,000 cells/mm³. AND

2) A new antimicrobial agent(s) (see Appendix for eligible antimicrobial agents) is started, and is continued for ≥ 4 calendar days.

Infection-related Ventilator-Associated Complication (IVAC)

On or after calendar day 3 of mechanical ventilation and within 2 calendar days before or after the onset of worsening oxygenation, ONE of the following criteria is met (taking into account organism exclusions specified in the protocol):

 Criterion 1: Positive culture of one of the following specimens, meeting quantitative or semi-quantitative thresholds as outlined in protocol, <u>without</u> requirement for purulent respiratory secretions:

Endotracheal aspirate, ≥ 10⁵ CFU/ml or corresponding semi-quantitative result

- Bronchoalveolar lavage, ≥ 10⁴ CFU/ml or corresponding semi-quantitative result
- Lung tissue, ≥ 10⁴ CFU/g or corresponding semi-quantitative result
- Protected specimen brush, ≥ 10³ CFU/ml or corresponding semi-quantitative result

2) Criterion 2: Purulent respiratory secretions (defined as secretions from the lungs, bronchi, or trachea that contain ≥25 neutrophils and ≤10 squamous epithelial cells per low power field [lpf, x100])⁺ <u>plus</u> organism identified from one of the following specimens (to include qualitative culture, or quantitative/semi-quantitative culture without sufficient growth to meet criterion #1):

- Sputum
- Endotracheal aspirate
- Bronchoalveolar lavage
- Lung tissue
- Protected specimen brush

⁺ If the laboratory reports semi-quantitative results, those results must correspond to the above quantitative thresholds. See additional instructions for using the purulent respiratory secretions criterion in the VAE Protocol.

- 3) Criterion 3: One of the following positive tests:
 - Organism identified from pleural fluid (where specimen was obtained during thoracentesis or initial placement of chest tube and NOT from an indwelling chest tube)
 - Lung histopathology, defined as: 1) abscess formation or foci of consolidation with intense neutrophil accumulation in bronchioles and alveoli; 2) evidence of lung parenchyma invasion by fungi (hyphae, pseudohyphae or yeast forms); 3) evidence of infection with the viral pathogens listed below based on results of immunohistochemical assays, cytology, or microscopy performed on lung tissue
 - Diagnostic test for Legionella species
 - Diagnostic test on respiratory secretions for influenza virus, respiratory syncytial virus, adenovirus, parainfluenza virus, rhinovirus, human metapneumovirus, coronavirus

January 2017

Possible Ventilator-Associated Pneumonia (PVAP)

VAE/VAP NHSN Criteria

Ventilator-Associated Condition (VAC)

- After 2 days of stable improving ventilator settings
- Patient has either
 - FiO₂ increase ≥ 20%
 - PEEP increase ≥ 3 cmH₂O
- Patient has VAC

Patient has a baseline period of stability or improvement on the ventilator, defined by ≥ 2 calendar days of stable or decreasing daily minimum* FiO₂ or PEEP values. The baseline period is defined as the 2 calendar days immediately preceding the first day of increased daily minimum PEEP or FiO₂.

Daily minimum defined by lowest value of FIO2 or PEEP during a calendar day that is maintained for at least 1 hour.

After a period of stability or improvement on the ventilator, the patient has at least one of the following indicators of worsening oxygenation:

AND

- 1) Increase in daily minimum FiO_2 of ≥ 0.20 (20 points) over the daily minimum FiO_2 in the baseline period, sustained for ≥ 2 calendar days.
- 2) Increase in daily minimum * PEEP values of $\geq 3 \text{ cmH}_2\text{O}$ over the daily minimum PEEP in the baseline period[†], sustained for ≥ 2 calendar days.

^{*}Daily minimum defined by lowest value of FiO_2 or PEEP during a calendar day that is maintained for at least 1 hour.

[†]Daily minimum PEEP values of 0-5 cmH₂O are considered equivalent for the purposes of VAE surveillance.

Ventilator-Associated Condition (VAC)

- After 2 days of stable improving ventilator settings
- Patient has either
 - FiO_2 increase \geq 20%
 - PEEP increase ≥ 3 cmH_2O
- Patient has VA

Patient has a baseline period of stability or improvement on the ventilator, defined by > 2calendar days of stable or decreasing daily minimum* FiO2 or PEEP values. The baseline period is defined as the 2 calendar days immediately preceding the first day of increased daily minimum PEEP or FiO2.

Daily minimum defined by lowest value of FiO2 or PEEP during a palagdar day that is maintained for at least 1 hour.

After a period of stability or improvement on the ventilator, the patient has at least one of the following indicators of worsening oxygenation:

AND

- 1) Increase in daily minimum FiO_2 of ≥ 0.20 (20 points) over the daily minimum FiO₂ in the baseline period, sustained for ≥ 2 calendar days.
- 2) Increase in daily minimum^{*} PEEP values of \geq 3 cmH₂O over the daily minimum PEEP in the baseline period[†], sustained for ≥ 2 calendar days.

Think about Your PEED *Daily minimum defined by lowest value of FiO2 or PEEP during a calendar day that is maintained for at least 1 hour.

[†]Daily minimum PEEP values of 0-5 cmH₂O are considered equivalent for the urposes of VAE surveillance.

Settings

PEEP Levels Matter

- We looked at VAP rates based on the default PEEP
 - 5 vs. 6 cmH20
- VAP Rate
 - PEEP 5
 - 4.81 / 1000 days
 - 57% VAPs triggered due to incr PEEP
 - PEEP 6
 - 1.98 / 1000 days
 - 25% VAPs triggered due to incr PEEP

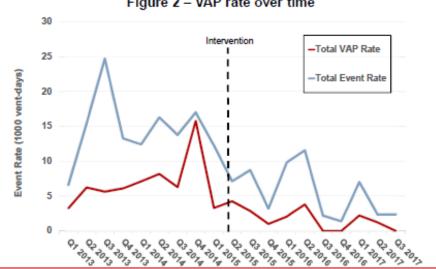
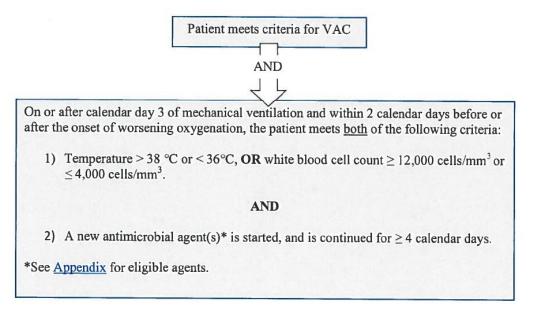


Figure 2 - VAP rate over time

Presented ATS 2018



Infection-related Ventilator-Associated Complication (IVAC)

- After 3 days on vent
- Patient has VAC
 - Worsening oxygenation
- Patient has
 - Fever, hypothermia, leukocytosis, or leukopenia

AND

 New antibiotic is started and continued for at least 4 days

Possible VAP

- On or after 3 days on vent
- Patient has iVAC
 - Worsening oxygenation
 - Signs of infection
- Patient has
 - 1. Positive quantitative / semi-quantitative culture
 - Endotracheal aspirate
 - BAL
 - Lung tissue
 - Protected specimen brushing
 - 2. Purulent sputum plus organism identified from specimen (see above)

Slides Courtesy Marcy Mcginnis and Julie Mangino

On or after calendar day 3 of mechanical ventilation and within 2 calendar days before or after the onset of worsening oxygenation, ONE of the following criteria is met (taking into account organism exclusions specified in the protocol):

- Criterion 1: Positive culture of one of the following specimens, meeting quantitative or semi-quantitative thresholds as outlined in protocol, without requirement for purulent respiratory secretions:
 - Endotracheal aspirate, ≥ 10⁵ CFU/ml or corresponding semi-quantitative result
 - Bronchoalveolar lavage, ≥ 10⁴ CFU/ml or corresponding semi-quantitative result
 - Lung tissue, ≥ 10⁴ CFU/g or corresponding semi-quantitative result
 - Protected specimen brush, ≥ 10³ CFU/ml or corresponding semi-quantitative result
- 2) Criterion 2: Purulent respiratory secretions (defined as secretions from the lungs, bronchi, or trachea that contain ≥25 neutrophils and ≤10 squamous epithelial cells per low power field [lpf, x100])⁺ <u>plus</u> organism identified from one of the following specimens (to include qualitative culture, or quantitative/semi-quantitative culture without sufficient growth to meet criterion #1):
 - Sputum
 - Endotracheal aspirate
 - Bronchoalveolar lavage
 Lung tissue
 - Lung tissue
 Protected specimen brush
 - ⁺ If the laboratory reports semi-quantitative results, those results must correspond to the above quantitative thresholds. See additional instructions for using the purulent respiratory secretions criterion in the VAE Protocol.
- Criterion 3: One of the following positive tests:
 - Organism identified from pleural fluid (where specimen was obtained during thoracentesis or initial placement of chest tube and NOT from an indwelling chest tube)
 - Lung histopathology, defined as: 1) abscess formation or foci of consolidation with intense neutrophil accumulation in bronchioles and alveoli; 2) evidence of lung parenchyma invasion by fungi (hyphae, pseudohyphae or yeast forms); 3) evidence of infection with the viral pathogens listed below based on results of immunohistochemical assays, cytology, or microscopy performed on lung tissue
 - Diagnostic test for Legionella species
 - Diagnostic test on respiratory secretions for influenza virus, respiratory syncytial virus, adenovirus, parainfluenza virus, rhinovirus, human metapneumovirus, coronavirus

January 2017

Possible Ventilator-Associated Pneumonia (PVAP)

Possible VAP using criterion 3

- Criterion 3: One of the following positive tests:
 - Organism identified from pleural fluid (where specimen was obtained during thoracentesis or initial placement of chest tube and NOT from an indwelling chest tube)
 - Lung histopathology, defined as: 1) abscess formation or foci of consolidation with Intense neutrophil accumulation in bronchioles and alveoli; 2) evidence of lung parenchyma invasion by fungl (hyphae, pseudohyphae or yeast forms); 3) evidence of infection with the viral pathogens listed below based on results of immunohistochemical assays, cytology, or microscopy performed on lung tissue
 - Diagnostic test for Legionella species
 - Diagnostic test on respiratory secretions for influenza virus, respiratory syncytial virus, adenovirus, parainfluenza virus, rhinovirus, human metapneumovirus, coronavirus

January 2017

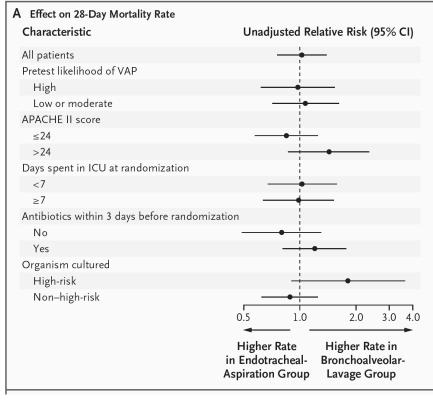
Possible Ventilator-Associated Pneumonia (PVAP)

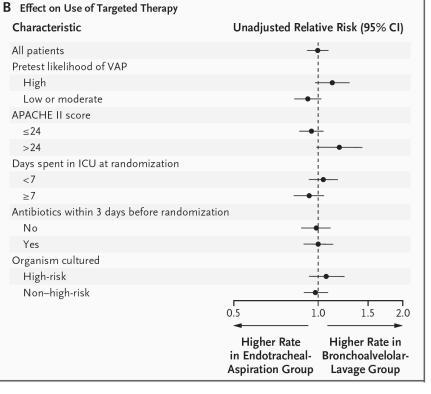
- After 3 days on vent
- Patient has iVAC
 - Worsening oxygenation
 - Signs of infection
- Patient has
 - Organisms from pleural fluid
 - Lung histo
 - Positive Legionella species
 - Positive viral diagnostic tests

Exclusions

- Patients on high frequency ventilation or extracorporeal life support (ECHMO) are excluded from surveillance
- Culture results reported as normal respiratory flora, normal oral flora, mixed respiratory flora, mixed oral flora, altered oral flora
- Candida species or yeast not otherwise identified
- Coagulase-negative Staphylococcus species
- Enterococcus species
- Airway Pressure Release Ventilation (APRV) is NOT EXCLUDED.

Summary


- Vent changes (FiO2 / PEEP) matter
- Antibiotic starting / stopping times matter
- Pulmonary secretion sampling matters



How to Confirm Microbiology? Sputum Culture versus BAL

Mortality

Targeted Therapy

THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

N ENGL J MED 355;25 WWW.NEJM.ORG DECEMBER 21, 2006

Bronchoscopy

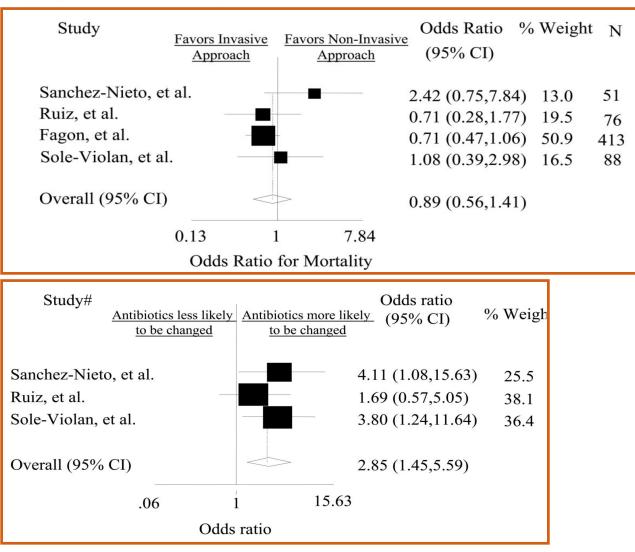
- Bronchoscopy versus sputum culture study excluded:
 - Immune suppressed patients
 - Patients with known pseudomonas or MRSA in past
 - Beta-lactam / ciprofloxacin allergic patients
- Many would advocate fiberoptic bronchoscopy in these groups

Bronchoscopy vs. Sputum Culture

Non-Invasive Testing

- Pro's
 - Cheap
 - Available 24/7
 - Sensitive
- Con
 - Non-specific
 - May lead to increased use of antibiotics

Invasive Testing


- Pro's
 - Specific
 - Likely leads to fewer antibiotic days
 - May improve short-term mortality
 - Reassurance
- Con
 - Expensive
 - Not readily available 24/7

Bronchoscopy vs. Sputum Culture

Mortality No Difference

Antibiotics CHANGED!

Crit Care Med 2005 Vol. 33, No. 1

A Compromise The mini-BAL

- Compared with Fiberoptic BAL
 - Sensitivity 63-100%
 - Specificity 66-96%

Endotracheal Aspirate Growth Level	Sensitivity (%)	Specificity (%)	Positive Predictive Value (%)	Negative Predictive Value (%)
Rare, light, moderate, or heavy	65.4	56.1	61.7	60.0
Light, moderate, or heavy	63.2	65.0	67.2	60.9
Moderate or heavy	44.4	83.3	76.8	54.6
Heavy	30.4	94.4	88.2	49.8
Rare, light, moderate, or heavy (antibiotic decision)	81.2	61.9	71.3	73.7

17.5% False positive sputum cultures compared with mini-BAL 42.2% of false positives were for MDR pathogens

THE OHIO STATE U WEXNER MEDICAL CENTER

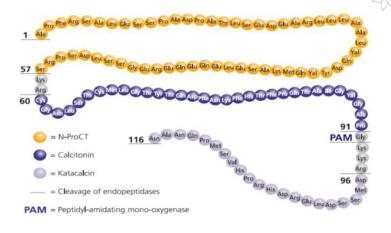
Respir Care 2009;54(11):1453-1461.

Diagnosis of VAP

- Have a high index of suspicion in patients with change in pulmonary status
- Chest x-rays useful to confirm suspicion, <u>but daily x-rays</u> <u>are unwarranted</u>
- Consider an invasive testing for microbiologic confirmation of infection
 - miniBAL or BAL
- DO NOT DELAY TREATMENT FOR MICRO

Treatment of VAP

- Know your antibiogram
- In general target:
 - Resistant gram positives (MRSA)
 - Pseudomonas (and other resistant gram negatives)
 - This usually means vanco + anti-PSA β-lactam
 - If critically ill, consider double covering for gram negatives
- Specific anaerobic coverage is usually not needed, even if "aspiration" is suspected



How Do I Stop the Madness? Procalcitonin (PCT) – Super Hero!

- By Day:

 Mild mannered
 116AA peptide
 responsible for
 calcium metabolism
 released by thyroid
- By Night:

 Highly specific marker of systemic bacterial infection released by many different tissues

Morgenthaler N. et al., Clin Lab 2002, 48: 263-270

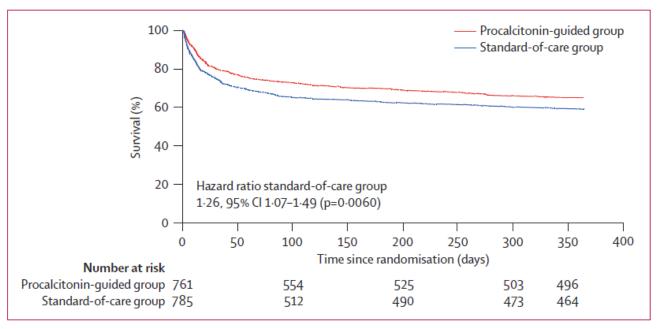
Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial

Evelien de Jong, Jos A van Oers, Albertus Beishuizen, Piet Vos, Wytze J Vermeijden, Lenneke E Haas, Bert G Loef, Tom Dormans, Gertrude C van Melsen, Yvette C Kluiters, Hans Kemperman, Maarten J van den Elsen, Jeroen A Schouten, Jörn O Streefkerk, Hans G Krabbe, Hans Kieft, Georg H Kluge, Veerle C van Dam, Joost van Pelt, Laura Bormans, Martine Bokelman Otten, Auke C Reidinga, Henrik Endeman, Jos W Twisk, Ewoudt M W van de Garde, Anne Marie G A de Smet, Jozef Kesecioglu, Armand R Girbes, Maarten W Nijsten, Dylan W de Lange

- 1575 admitted to the ICU on antibiotics
 - Excluded: severe immune suppression, endocarditis, severe viral/mycobacteria/parasitic
- PCT measured baseline and then daily
- Suggested abx stopped for either:
 - PCT decreased by > 80% baseline
 - PCT ≤ 0.5 ug/L
- Primary outcome consumption of antibiotics

We can use this on sick patients

- 82% severe sepsis
- 18% septic shock
- 81% mechanically ventilated
- 9% on dialysis
- 96% on vasopressors
- 54% on steroids



Can we reduce ICU antibiotics?

- Antibiotic Consumption
 - Standard 9.3 (5.0-16.5) days
 - PCT 7.5 (4.0-12.8) days
- Reinfection (with same bacteria)
 - Standard 2.9%
 - PCT 5%
- Compliance
 - 44% stopped within 24-hours
 - 97% stopped within 48-hours

Checking Procalcitonin Saves Lives

Figure 2: Kaplan-Meier plot for probability of survival from random assignment to day 365, in the modified intention-to-treat population

- 28-Day Mortality
 - Standard care 25%, PCT 19.6%
- 1-Year Mortality
 - Standard care 40.9%, PCT 34.8% (difference 6.1%)

NNT = 16!

Interim Summary

- VAP is a common nosocomial infection associated with increase costs and mortality
- There is no gold standard for diagnosis of VAP
- Maintain clinical suspicion and start treatment while awaiting microbiologic confirmation by sputum or invasive culture methods
- Early (<u>STAT</u>) antibiotics and appropriate deescalation are the mainstay of treatment

The Best Way to Treat VAP is to Prevent It

Ventilator-Associated Pneumonia Learning Objectives

- Understand diagnostic criteria for a ventilatorassociate pneumonia
- Understand the treatment options for ventilatorassociate pneumonia
 - Discuss the role of "VAP-bundles" in preventing ventilator-associate infections

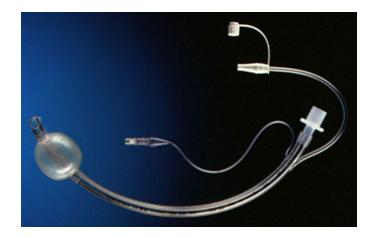
Prevention of VAP The Ventilator Bundle

Collection of best practices designed to reduce the duration of ventilator use and thus ventilator-associated pneumonia

- Head of bed elevation ≥ 30°
- Oral Care
- Daily ventilator liberation trials
- Daily continuous sedation stops
- DVT prophylaxis
- Stress-ulcer prophylaxis

Ventilator Bundle

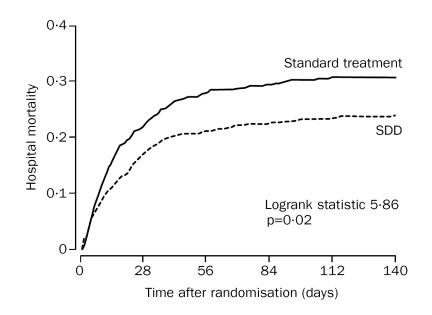
Practice	Rationale
HOB elevation	Prevent micro-aspiration of oral flora
Oral care	Reduced bacterial load of oral flora
Daily vent liberation trials	Ensure early awareness of readiness for self-breathing
Daily sedation stops	Ensure lowest effective dose of sedatives are used
DVT prophylaxis	Prevent complication known to prolong ventilator use
Stress-ulcer prophylaxis (H2-blocker)	Prevent complication known to prolong ventilator use


Why do these work?

Can a Tooth Brush Really Help?

		No with event/N	lo of patients	_		
	Study	Treatment group	Control group	p Relative risl (random) (95%	k Weig Cl) (%)	ht Relative risk (random) (95% CI)
	Antibiotics			(random) (95%	(%)	(random) (95% CI)
	Bergmans 2001 ^{w1}	9/87	38/139		9.7	1 0.38 (0.19 to 0.74)
	Kollef 2006 ^{w2}	52/362	62/347		15.8	0.80 (0.57 to 1.13)
	Laggner 1994 ^{w3}	1/33	4/34	<	- 1.72	2 0.26 (0.03 to 2.19)
	Rios 2005 ^{w10}	15/47	13/49		- 10.4	7 1.20 (0.64 to 2.25)
	Subtotal (95% CI)	529	569		37.7	0.69 (0.41 to 1.18)
•	Test for heterogeneity: χ^2	=7.39, df=3, P=0.06	, 1 ² =59.4%			
[?/_m	Test for overall effect: z=	1.35, P=0.18				
	Antiseptics					
In Lie Mo	De Riso 1996 ^{w4}	3/173	9/180	~	4.11	1 0.35 (0.10 to 1.26)
	Fourrier 2000 ^{w5}	5/30	15/30		7.18	8 0.33 (0.14 to 0.80)
	Fourrier 2005 ^{w6}	13/114	12/114	e	- 8.79	9 1.08 (0.52 to 2.27)
	Koeman 2006 ^{w7}	13/127	23/130		10.3	0.58 (0.31 to 1.09)
0	MacNaughton 2004 ^{w11}	21/101	21/93		12.0	0.92 (0.54 to 1.57)
	Segers 2005 ^{w9}	35/485	67/469		14.8	0.51 (0.34 to 0.75)
2	Seguin 2006 ^{w8}	3/36	25/62	←	5.02	7 0.21 (0.07 to 0.64)
	Subtotal (95% CI)	1066	1078	•	62.2	9 0.56 (0.39 to 0.81)
	Test for heterogeneity: χ^2	e=11.59, df=6, P=0.0	7,1 ² =48.2%			
	Test for overall effect: z=	3.08, P=0.002				
	Total (95% CI)	1595	1647	•	100.0	00 0.61 (0.45 to 0.82)
	Test for heterogeneity: χ^2	e=21.07, df=10, P=0.	02,/ ² =52.5%			23 Z
	Test for overall effect: z=			0.1 0.2 0.5 1	2 5 10	
				Favours treatment	Favours control	
					👩 Тне Оню S	TATE UNIVERSITY
BMJ 2007;334:8	202					AL CENTER

Subglottic Suctioning Prevents VAP


	SSD)	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Bouza 2008	12	331	19	359	18.4%	0.69 [0.34, 1.39]	
Kollef 1999	8	160	15	183	13.3%	0.61 [0.27, 1.40]	
Lacherade 2010	25	169	42	164	46.3%	0.58 [0.37, 0.90]	-=-
Lorente 2007	11	140	31	140	22.0%	0.35 [0.19, 0.68]	
Total (95% Cl)		800		846	100.0%	0.54 [0.40, 0.73]	•
Total events	56		107				
Heterogeneity: Tau ² =	0.00; Chi ²	= 2.23	, df = 3 (F	P = 0.53	3); l² = 0%	H	0.01 0.1 1 10 100
Test for overall effect:	Z = 3.99 (P < 0.0	001)				0.01 0.1 1 10 100 0.01 0.1 0.1 0.1 0.1 0

Crit Care Med 2011 Vol. 39, No. 8

Why Not Gut Decontamination?

- Mortality benefit!
- BUT unit had
 - NO MRSA
 - < 5% resistant gram negatives

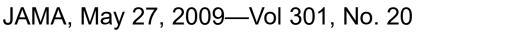
Numbers	of patients	s at risk				
SDD	457	383	360	354	350	348
Non-SDD	460	363	331	324	318	318

Figure 2: Cumulative hospital mortality for SDD treatment and standard treatment

Speaking of the Gut

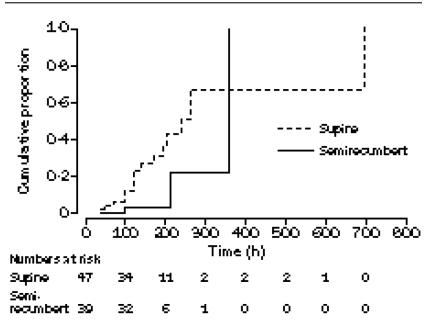
- Acid suppression increased risk of VAP, but only in group on PPI therapy
- GI prophylaxis still recommended due to high risk of GI bleed, but focus on H₂-blockers

Table 4. Rates of Hospital-Acquired Pneumonia According to Type of Acid-Suppressive Medication


	Acid- Suppressive Medication	No Acid- Suppressive Medication	Unadjusted OR (95% Cl)	Adjusted OR (95% Cl)
	Proton-Pur	np Inhibitors ^a		
Total admissions, No.	25374	30 956	56330	56330
Hospital-acquired pneumonia, No. (%)	1340 (5.3)	610 (2.0)	2.8 (2.5-3.1)	1.3 (1.1-1.4) ^b
	Histamine ₂ Rece	eptor Antagonists ^c		
Total admissions, No.	5686	30 956	36642	36642
Hospital-acquired pneumonia, No. (%)	176 (3.1)	610 (2.0)	1.6 (1.3-1.9)	1.2 (0.98-1.4) ^k

Abbreviations: CI, confidence interval; OR, odds ratio.

^aPatients prescribed histamine₂ receptor antagonists were excluded from this analysis.


^bAdjusted for all variables listed in Table 1, plus admission day of the week, using a multivariable generalized estimating equation (GEE) to take into account dependency of the data due to repeated admissions.

^CPatients prescribed proton-pump inhibitors were excluded from this analysis.

Head of Bed and VAP Prevention

Figure 2: Cumulative proportion of patients with clinically suspected pneumonia

Comparison of semirecumbent and supine body position (log-rank test, p=0.018).

Lancet 1999; 354: 1851-58

 Semi-recumbent position reduce VAP rate by 26% (10-42%) p = 0.003

 Supine position increased odds of VAP 6.8 [1.7-26.7] (p=0.006) THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

Spontaneous Breathing Trials

Protocol Weaning of Mechanical Ventilation in Medical and Surgical Patients by RespiratoryCare Practitioners and Nurses^{*}: Effect on Weaning Time and Incidence of Ventilator-Associated Pneumonia

Gregory P. Marelich, Susan Murin, Felix Battistella, John Inciardi, Terry Vierra and Marc Roby

Garry Kasparov

		-	
Outcomes	MD	VMP	p Value
Duration of mechanical ventilation, r	nedian h		
(interquartile range)			
Medicine $(n = 170)$	232 (63-435)	78 (38–168)	0.0003
Surgery $(n = 165)$	111 (52–181)	64 (30–156)	NS
Combined $(n = 335)$	124 (54–334)	68 (33–164)	0.0001
VAP, No. of patients in treatment arr	ms(%)		
Medicine $(n = 170)$	8 (9)	6(7)	0.674
Surgery $(n = 165)$	12~(15)	5(6)	0.061
Combined $(n = 335)$	20(12)	11(7)	0.100

*NS = not significant.

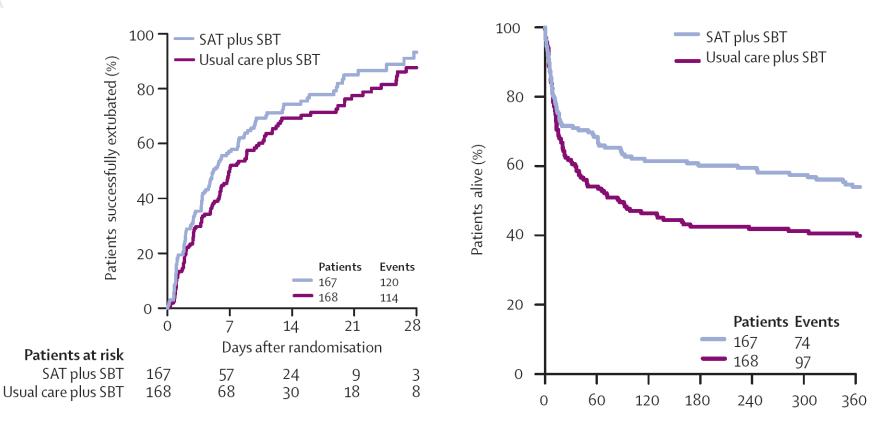
(CHEST 2000; 118:459-467)

Sedation Holiday and VAP

- Increased sedation increases odds of VAP 2.3 (1.3 – 4.1)
- Paralytic agents increased odds of VAP 2.7 (1.6 – 4.5)

Crit Care Med 2006 Vol. 34, No. 4

Nursing Driven Protocol Reduces VAP


Table 2. Ventilator-associated pneumonia (VAP), duration of mechanical ventilation, length of intensive care unit (ICU) and hospital stay, ICU and in-hospital mortality, and extubation failure according to study group

Variable	Control Group $(n = 226)$	Protocol Group $(n = 197)$	p Value
VAP, n (%)	34 (15)	12 (6)	.005
Duration of mechanical ventilation, days			.001
Median	8	4.2	
Interquartile range	2.2-22	2.1 - 9.5	
Unscheduled self-extubation, n (%)	16(7)	21(10.7)	.09
Extubation failure, n (%)	29 (13)	11 (6)	.01
Time from end of sedative infusion to extubation, hrs			.01
Median	65	33	
Interguartile range	36-123	12 - 75	
Length of stay in ICU, days			.004
Median	11	5	
Interguartile range	2.5 - 27	2.5 - 13	
Length of stay in hospital, days			.003
Median	21	17	
Interquartile range	5–33	5-22	
ICU mortality, n (%)	88 (39)	63 (31)	.19
In-hospital mortality, n (%)	101 (45)	75 (38)	.22

Crit Care Med 2007 Vol. 35, No. 9

Putting it All Together Awake and Breathing Trial

Rate of self-extubations was 10% in intervention group (4% control), but no increased risk of reintubation

Conclusions

- Ventilator-Associated Pneumonia has a significant cost in dollars and lives
- New definition makes screening challenging, but...
- Adherence to "Vent Bundles" can reduce the incidence of VAP
- Appropriate antibiotic use can reduce ICU-time and antibiotic resistance

Questions / Comments

